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We study quaternionic group representations of finite groups systematically and 
obtain some basic tools of the theory, such as orthogonality relations and the 
Clebsch-Gordan series for reducible representations. We also derive all 
irreducible inequivalent Q-representations of a group G, classifying them 
according to a suitable generalization of the Wigner-Frobenius-Schur 
classification. 

1. INTRODUCTION 

Many attempts have been made to formulate quantum mechanics in 
vector spaces over the skew-field Q of the quaternions. In the early 1960s a 
series of papers (Finkelstein et al., 1959, 1962, 1963) tried a systematic 
approach to quatemion quantum mechanics; these also constitute the starting 
point for a theory of quaternionic group representations (QGR). 

Despite many considerable difficulties that we do not examine here, 
new efforts in this direction have been made in the last decade (Adler, 1986; 
Rotelli, 1989; De Leo and Rotelli, 1995), also resorting to group-theoretic 
techniques, as usual in complex quantum mechanics and quantum field theory. 

We intend to study QGR directly (i.e., without the detour of transcribing 
the quaternion operators into complex ones via the symplectic representation) 
and systematically in this paper, going over the basic steps of the theory. We 
follow the spirit of the papers quoted above, using their suggestions and 
major results, but we limit our study to the case of linear representations of 
finite (or compact) groups. 

When dealing with this subject, the main difficulties come from the 
noncommutativity of Q, which complicates from the very beginning the basic 
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problem of the invertibility of a linear mapping, so that a new definition of 
determinant (which reduces to the usual one when applied to the complex 
case) is needed (Chen, 1991a,b) and the usual form of the character of a 
representation must be abandoned in favor of a (seemingly) weaker character- 
ization. Moreover, since the field Q is not algebraically closed, the corollary 
of the Schur lemma (which is a basic tool for the analysis of representations 
and for deriving orthogonality relations) fails to be true in its usual form. 
This notwithstanding, we obtain in Section 3 (after having devoted Section 
2 to recalling the basic notation and properties of the quaternion vector 
spaces) some orthogonality relations for linear representations and characters 
in QGR that can be applied to analyze any reducible Q-representation, so 
that we can prove that two Q-representations are equivalent if and only if 
they have the same (real) character. Furthermore, we obtain in Section 4 all 
the (inequivalent) irreducible Q-representations (Q-irreps) of a (finite) group 
G and classify them according to a generalization of the well-known Wigner- 
Frobenius-Schur classification of C-representations. 

2. Q U A T E R N I O N  V E C T O R  SPACES 

A quaternion is usually expressed as 

q = qo + qli + q z j  + q3k 

whereqi ~ R ( i =  0, 1 , 2 , 3 ) , i  2 = j 2  = k 2 = -1 ,  ij = - j i =  k. 
The quaternion skew-field Q is an associative algebra of rank 4 over R, 

noncommutat" e, and endowed with an involutory antiautomorphism (conju- 
gation) such that 

q ---) qa = qo -- qli -- q2J -- q3k 

One can verify that 

Vp, q ~ Q (pq)a  = qapa 

Every quaternion q admits the so-called symplectic decomposit ion (Cur- 
tis, 1979) 

{qo + qti - q 2  - q3i~ 
q _..> 

q2 - q3i qo - qli J / 

In a (right) n-dimensional vector space Qn over Q, every linear operator 
is associated in a standard way (Curtis, 1979) to an n • n matrix acting on 
the left. Every quaternionic matrix admits a (2n-dimensional) symplectic 
representation which consists in substituting every matrix element by its 
symplectic decomposition (we note explicitly that the trace of every symplec- 
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tic representation is necessarily real). Moreover, a mapping A is proved to 
be invertible (Chen, 1991b) whenever the so-called double determinant (i.e., 
det AA t) is different from zero, and this condition is easily recognized (Scola- 
rici, 1994) to coincide with the condition introduced, in a more intuitive 
fashion, by Finkelstein et al. (1959). 

Finally, the relation 

(x, Y) = ~ xiQYi 
i 

(where xi, yi are the components in Qn of the vectors 2, y) defines a scalar 
product in Qn. 

In analogy with the case of complex group representations (CGR), one 
can then define the Hermitian conjugate A t = A rQ of a matrix A (A r denotes, 
as usual, the transpose of A), and introduce the concepts of unitarity, Hermiti- 
city, and so on. The properties of Hermitian and unitary matrices have been 
investigated (Finkelstein et al., 1959, 1962, 1963); we stress here only the 
fact that, if G is a finite (or a compact) group, reducibility implies complete 
reducibility even in the case of  unitary Q-representations D(G), and every 
Q-representation is equivalent to a unitary one (the proofs follow trivially from 
those supplied in the complex case with minimal changes) (Scolarici, 1994). 

Finally we recall that for Q-irreps the Schur lemma still holds (Finkelstein 
et al., 1963), while its corollary must be generalized as follows: 

"If a Hermitian matrix H commutes with an irreducible set D of matrices, 
it is a (real) multiple of the unit matrix" (Finkelstein et al., 1963). 

3. ORTHOGONALITY RELATIONS AND ANALYSIS OF 
Q-REPRESENTATIONS 

Let D(G) be an n-dimensional irreducible and unitary Q-representation 
of a finite group G and let us consider the matrix 

A = ~ D ( g - 1 ) X D ( g ) =  ~ DTQ(g)XD(g) (1) 
gEG gEG 

with X Hermitian; then, trivially, A = A t. 
Indeed 

aij : E E Da(g)Xk, Dtj(g) = AQ (2) 
gEG k,l 

Moreover, D(g)A = AD(g),  Vg ~ G. 
By using the corollary of Schur's lemma (Finkelstein et al., 1963), 

we obtain 

A = h(x~I. (3) 
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where k (:0 ~ R and In is the unit n • n matrix. 
Let us choose now in (1) a matrix X ~r) in such a way that X~ ) = ~krStr 

with r fixed, and take the real trace of A. Recalling that the real trace satisfies 
the cyclic property Re Tr BC = Re Tr CB (Finkelstein et al., 1963; Rotelli, 
1989), we obtain 

Re Tr A = ~ Re Tr X (r) = [G] = X(r)n (4) 
g 

where [G] is the order of G. 
By substituting the explicit form of X(ff and h (r) in equation (2), we 

easily obtain 

DQ(g)Drj(g ) = [a]  ~ij (5) 
g ~ G  gl 

Analogously, let D(~)(G) and D(~)(G) (~ -r v) be two unitary inequivalent 
Q-irreps of G whose dimensions, respectively, are n~ and n,; then the matrix 

A = ~ D(~)(g-1)XD(~)(g) (6) 
g E G  

for every matrix X satisfies the condition 

D(~)(h)A = AD(V)(h), Vh ~ G 

By using the Schur lemma (Finkelstein et al., 1963), we conclude that 
A must vanish identically. 

Choosing in (6) a matrix X (m such that X(k~ s) --- gkrgt~ with r, s fixed and 
writing down the explicit form of A~j, we obtain 

D(~)Qt~D (v.)r = 0 (7) 
g E G  

and finally [expressing equations (5) and (7) in a more compact form], 

D(~)Q(g)D(e)(o~ = [G] ri " rj x o :  8 i j ~ t v  (8) 
g e G  n~ 

which is the (weaker) analog for Q-irreps of the orthogonality relation for 
C-irreps. 

Let us now put r = i and s = j in equation (7), and let us sum over i 
and j ;  then, 

X(r = 0 (9) 
g 

where X(~)(g) denotes the (full) trace of D(r Equation (9) expresses the 
orthogonality between (quaternionic) characters of two inequivalent Q-irreps 
of the group G. 
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On the other hand, the following identity holds: 

1 
~(~)(g) = Re X(~)(g) = ~ [X(w)(g) - ix(~)(g)i - jx(r - kx(~)(g)k] 

and each term in parentheses, say -i• can be considered as the charac- 
ter of g in a Q-representation (in our case -iD(~)i), which is equivalent to 
the D (~, but certainly inequivalent to the D (~) (Scolarici, 1994). For, we easily 
get the following relation from (9): 

1 ~g ~(~)2(g) 2g ~(~)(g)~0')(g) = 8 ~  (10) 

or also (remembering that conjugated elements of a group have the same 
real character) 

1 
~;~?)~?~ = ~ (11) 

E; 

where ~ )  indicates obviously the (real) character of all elements belonging 
to the ith conjugation class of G, and ki is the number of the elements of 
such a class. 

As usual in CGR theory, equation (11) can be read as an orthogonality 
relation between vectors in a K-dimensional space (where K is the number 
of the conjugation classes of G), so that we finally obtain that the number r 
of inequivalent Q-irreps of G must satisfy the inequality 

r -< K (12) 

We will see later that some groups exist for which strict inequality 
actually holds in QGR, while this does not occur in CGR. More important, 
we stress that the choice of characterizing any Q-representation by means of 
the real part of the trace (due to the necessity of maintaining the cyclic 
property of this quantity) does not eliminate any relevant information, as we 
will see in Section 4. 

The possibility of decomposing any reducible Q-representation follows 
at once from these results. Indeed, let 

D(G) = ~ a~D(~)(G) 
g~ 

be the Clebsch-Gordan series of a reducible Q-representation D(G). Then, 
trivially~ 

~((g) = ~ aS((~)(g ) Vg ~ G 
Ix 
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By using equation (11), we obtain 

1 
aN - ~i ki)(~ ~)2 ~i kif(if(~) (13) 

and this decomposition is unique, so that we can finally assert that two Q- 
representations are equivalent if and only if their (real) characters coincide. 

4. Q-IRREPS AND THEIR CLASSIFICATION 

We can now obtain and classify all irreducible Q-representations of a 
group G, generalizing the well-known classification of Wigner-Frobenius- 
Schur (Hamermesh, 1962; Dyson, 1962; Finkelstein et al., 1963; Ascoli et 
al., 1974; Garola and Solombrino, 1985). We briefly recall that a (unitary) 
C-irrep is said to be of class 0 if it is not equivalent to its complex conjugate, 
while it is said to be of class + 1 (respectively, - 1) if it is equivalent to its 
complex conjugate 

D*(g) = CD(g)C -L Vg ~ G 

and C is symmetric (respectively, antisymmetric). In the last cases, the (com- 
plex) character • of D(G) turns out to be real; moreover, the dimension is 
necessary even for representations of class - 1. 

Furthermore, it is well known that the following relation holds (Hamer- 
mesh, 1962): 

X(~)(g 2) = c(~)[G] (14) 
g 

where 

t:0, i:0, c (~) = if D (~) is of class 
1 1 

Then, any C-irrep of a group G can obviously be considered as a 
(not necessary irreducible) Q-representation and an important theorem (Main 
Reduction Theorem) states that "a C-irrep D reduces over Q (into two equiva- 
lent Q-irreps D 1 and D2) if and only if D belongs to the class - 1" (Finkelstein 
et al., 1963). 

The Main Reduction Theorem permits us to conclude that any C-irrep 
D(~)(G) generates a Q-irrep b(~)(G), which has the same dimension when it 
is of class 0 or + 1 (in these cases D (*) =/)(~)) and halved dimension when 
it is of class - 1. 
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Let X~E be the (complex) character of the C-irrep D ~r and ~ )  the (real) 
character of the Q-representation b~"~; then, by using the previous discussion, 
one obtains 

~(~) = {Re X~ ) when D (~ is of class 
I • 1 t. 2 C  

(15) 

As to the equivalence between the / )~ ' s ,  we recall that two inequivalent 
C-irreps share the same real part of the character if and only if they are 
complex conjugate of each other (see Appendix). Then, one can easily prove 
the following: 

All the Q-representations b ~r so found are inequivalent to each other, 
with the exception of those generated by a pair of complex conjugated 
representations of class 0. 

Let indeed D~)(G) and D~")(G) be two C-irreps of classes, say, + 1 and 
0, respectively. Then, their orthogonality reads 

(p.),  (v) Xc (g)Xc (g) = ~ • Re X~(g) + i Im • = 0 
g g 

which implies [by using also equation (14)] 

~(~r = 0 
g 

i.e., recalling equation (10), b ~ is inequivalent to b ~.  
One can prove in a similar way the other inequivalences stated by the 

theorem; in addition, one gets at once that two (C-inequivalent) representa- 
tions of class 0 are equivalent in Q when they are complex conjugate [e.g., 
D*(g) = -jD(g)j] and are certainly inequivalent in Q in the other cases, 
since they have then different real parts of the character. 

We note explicitly that the proposition above assures us that the real 
part of the character fully identifies all the Q-irreps b ~) so found. 

We can now prove our major result. 

Theorem. No Q-irrep exists besides those generated (in the sense of the 
Main Reduction Theorem) by the C-irreps (Scolarici, 1994). 

Proof Let a Q-irrep b ~'~ exist which is inequivalent to the b ~ ' s  gener- 
ated by the C-irreps of a group G. Then, its character must satisfy the condition 

~(~ (g)2~)(g) = 0 'v'lx v~ o~ (16) 
g 
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Let us consider now the symplectic representation D(~)m of /3 (~). Its 
v(~) = 2~(~). character "~(~) is necessarily real (see Section 2); moreover, Asym Asym 

Then, the coefficients of the Clebsch-Gordan series are in CGR theory 

a(~ ) = l_l_ g~ ~(~)*(o).(~),o~ 
[G] ,tc ~b Asym'~ 61 

= [G]! ~ [Re X(c~)(g) - i Im AC"(~)(~ A~ym~6,C~ 

Since these coefficients must be real by definition, one immediately gets, 
recalling (15) and (16), a(~ ~') = 0 (VIz). Thus, ~sym/~(a) cannot exist and the 
theorem is proved. 

As a corollary, we also obtain that the real character y( fully characterizes 
any Q-irrep, as we anticipated in Section 3. 

Furthermore, we obtain from the previous results, recalling (12), that 

r < K (17) 
/ 

if and only if the group G admits C-irreps belonging to the class 0. 
We conclude with some final remarks that allow us to classify intrinsi- 

cally (i.e., without resorting to their "generating" C-irreps) all the Q-irreps 
of a (finite) group G. First, we recall that for any C-irrep the following 
relation holds (Hamermesh, 1962): 

[X(r 2 = [G] (lS) 
g 

Then, substituting (15) in (18) and observing that for complex characters 
[see again the Appendix, equation (A.5)] 

(Re X(w)(g)) 2 = ~ (Im X(r 2 
g g 

we finally obtain 

where 

~(~)2(g) -- [G] (19) 
g c (~) 

{i [+1 c (w) = when D (r belongs to the class 0 
- 1  

(the above relation also allows one to simplify the orthogonality relation and 
the related formulas in Section 3). 



Notes on Quaternionic Group Representations 2499 

We also recall that a C-irrep D (~) (hence, a Q-irrep/5(~)) can be expressed 
in a suitable basis by real matrices if and only if it is of class + 1 (Hamermesh, 
1962; Finketstein et al., 1963; Ascoli et al., 1974). On the other hand, a C- 
irrep also is a Q-irrep when it is of class + 1 or 0, while it reduces to a 
(halved) Q-irrep when of class - 1. Then, based on our above treatment we 
can assert that (Dyson, 1962; Ascoli et al., 1974): 

�9 b (~) is a Q-irrep "potentially real" or of type R if and only if Eg 
~(r = [G] if and only if D (~) belongs to the class + 1. 

�9 /)(~ is a Q-irrep "potentially complex" or of type C if and only if 
s ~ )2 (g )  = �89 if and only if D <~) belongs to the class 0. 

�9 L)(~) is a Q-irrep (purely) quaternionic or of type Q if and only if 
s ~(~)2(g) = �88 if and only if D {r belongs to the class - 1. 

Finally, we observe that all the results in this paper can be generalized 
(with minimal and obvious changes) to the case of compact groups; thus, 
some results about the Q-irreps of the 3-dimensional rotation group that are 
already known in the literature (Finkelstein et al., 1959) can immediately be 
recovered in our general framework. 

APPENDIX 

Let D and D' be two inequivalent C-irreps of the group G, whose 
characters have the same real part. Irreducibility of both representations 
implies 

1 1 ]2 
[G] ~,  ktlxt l2 = 1 = ~ - i , ~  k ' lx [  (A.1) 

Let us put now Xl = eq + i61 and X~ = o~[ + il3 [ . Then, it fo l lows f rom 
equation (A. 1) that 

k~et 2 + ~ kt[3 ] = ~ k~ot~ + ~ kz~[ 2 = [G] (A.2) 
l l 1 1 

Let us observe that should all [3l vanish, also all [3[ would vanish, so that D 
and D',  having the same character, would be equivalent. This contradicts the 
above assumption, so that neither the [3l nor the [31 can all be zero. Moreover, 
since D is inequivalent to D', D to D*, and D' to D'*, we have 

ktx~x't = 0 (A.3) 
l 

from which 

klot ] + ~ kt[3t[3[ = 0 (A.4) 
/ l 
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and analogously 

k,a~ 2 - ~ k,13/2 = 0 (A.5a) 
1 I 

k~t  a - ~ k~[3~ 2 = 0 (A.5b) 
l l 

By combining linearly the previous equations, we obtain 

kt[[32 + [3[ 2 + 213ii3[1 -- ~ kt[[31 + [3/12 = 0 
l l 

Hence [31 = -[3[  for  all I. 
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